Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Water Environ Res ; 94(9): e10785, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36112044

RESUMO

In this work, we report the synthesis of a biobased hydrogel comprised of collagen, chitosan, and polyurethane for the removal of textile dyes. The adsorption capacity of this hydrogel was improved by adding a magnesium metal-organic framework to the semi-interpenetrating polymer matrix yielding a composite hydrogel. Removal of Bismarck Brown and Congo red was studied, and the experimental results fit Freundlich's model. Both hydrogel formulations were tested for the removal of textiles dyes from wastewaters. The magnesium-metal organic framework improved the efficiency of the biobased hydrogel for the removal of direct and mordant dyes reaching up to 89 ± 2%. The composite hydrogel was tested for the removal of Congo Red in a fixed bed column observing the breakthrough point after 168 min. Also, a flocculant material was prepared from collagen and chitosan and was tested for the removal of direct red dye from wastewater removing up to 80 ± 1%. The pretreated wastewater by coagulation-flocculation was treated by adsorption yielding a global removal efficiency of 99%. Finally, the studied hydrogels are potentially biodegradable being completely degraded by the proteolytic action after 22 days. PRACTITIONER POINTS: Composite hydrogels of collagen, chitosan, and MgMOF74 removed efficiently textile dyes from wastewater in batch systems and fixed bed columns. A biobased flocculant of collagen and chitosan significantly improved water quality after coagulation flocculation. Hydrogels were reusable for four cycles, and they can be proteolytically degraded after 22 days.

2.
Int J Biol Macromol ; 175: 304-312, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33516854

RESUMO

Steam explosion can be used to pretreat lignocellulosic materials to decrease energy and chemical consumption during pulping to obtain environmentally friendly lignin and to improve lignin yield without changing its structure. The objective of this study was to evaluate the extraction of lignin from oil palm mesocarp fibers and sugarcane bagasse using steam explosion pretreatment followed by acetosolv. The biomasses were pretreated at 168 °C for a reaction time of 10 min. Steam explosion combined with acetosolv at lower severities was also carried out. Steam explosion followed by acetosolv increased the lignin yield by approximately 15% and 17% in oil palm mesocarp fibers and sugarcane bagasse, respectively. In addition, steam explosion decreased the reaction time of acetosolv four-fold while maintaining the lignin yield from sugarcane bagasse. Similar results were not obtained for oil palm mesocarp. High-purity and high-quality lignins were obtained using steam explosion pretreatment with structural characteristics similar to raw ones. Sugarcane bagasse lignin seems to be a better option for application in material science due its higher lignin yield and higher thermal stability. Our findings demonstrate that steam explosion is efficient for improving lignin yield and/or decreasing pulping severity.


Assuntos
Celulose/isolamento & purificação , Lignina/isolamento & purificação , Óleo de Palmeira/isolamento & purificação , Ácido Acético/química , Biomassa , Biotecnologia/métodos , Celulose/química , Etanol , Hidrólise , Lignina/química , Extratos Vegetais/isolamento & purificação , Saccharum/química , Vapor
3.
Water Environ Res ; 93(4): 596-607, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32991022

RESUMO

The high-strength leachate produced from sanitary landfill is a serious issue around the world as it poses adverse effects on aquatic life and human health. Physio-chemical technology is one of the promising options as the leachate normally presents in stabilized form and not fully amendable by biological treatment. In this research, the effectiveness of natural zeolite (clinoptilolite) augmented electrocoagulation process (hybrid system) for removing high-strength ammonia (3,442 mg/L) and color (8,427 Pt-Co) from naturally saline (15 ppt) local landfill leachate was investigated. A batch mode laboratory-scale reactor with parallel-monopolar aluminum electrodes attached to a direct current (DC) electric power was used as an electrocoagulation reactor for performance enhancement purpose. Optimum operational conditions of 146 g/L zeolite dosage, 600 A/m2 current density, 60 min treatment time, 200 rpm stirring speed, 35 min settling duration, and pH 9 were recorded with up to 70% and 88% removals of ammonia and color, respectively. The estimated overall operational cost was 26.22 $/m3 . The biodegradability of the leachate had improved from 0.05 to 0.27 in all post-treatment processes. The findings revealed the ability of the hybrid process as a viable option in eliminating concentrated ammonia and color in natural saline landfill leachate. PRACTITIONER POINTS: Clinoptilolite was augmented on the electrocoagulation process in saline and stabilized landfill leachate (15 ppt). The high strength NH3 -N (3,442 mg/L) and color (8,427 Pt-Co) were 70% and 88% removed, respectively. The optimum conditions occurred at 140 g/L zeolite, 60 mA/cm2 current density, 60 min, and final pH of 8.20. The biodegradability of the leachate improved from 0.05 to 0.27 after the treatment. This hybrid treatment was simple, faster, and did not require auxiliary electrolyte.


Assuntos
Poluentes Químicos da Água , Zeolitas , Amônia , Análise da Demanda Biológica de Oxigênio , Eletrocoagulação , Humanos , Oxirredução , Poluentes Químicos da Água/análise
4.
Water Environ Res ; 92(8): 1123-1130, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32040863

RESUMO

This study describes a process of extraction of high purity sodium nitrate from corrosive chemical industry effluents. Here, we have designed a process to convert highly corrosive effluents of ceramic industries having pH ~13.1 into sodium nitrate nanoparticles. The extraction of sodium nitrate has been carried out via neutralization of industrial effluent by nitric acid. We have also studied the effect of low boiling point co-solvent during recrystallization of sodium nitrate. TEM studies of sodium nitrate extracted from the filtrate in the absence of co-solvent show the formation of nanoparticle of ~70 nm. Further, a drastic decrease in particle size to 10 nm has been observed when co-solvents (methanol, ethanol, and acetone) were used in combination with filtrate during the recrystallization process of sodium nitrate. Thermal properties of sodium nitrate extracted from filtrate have been investigated. Our result indicates that the nanoparticles extracted from filtrate having very high heat storage density (453 J/g) without hampering the melting point and boiling point of the materials. PRACTITIONER POINTS: The new chemical process has been developed to treat the industrial effluent Extraction of nanostructured sodium nitrate has been carried from industrial effluent The particle size of sodium nitrate drastically influenced by the used co-solvent for recrystallization The highest heat storage density is 453 J/g, which was obtained from the recrystallization of the filtrate.


Assuntos
Nanopartículas , Nitratos , Acetona , Resíduos Industriais/análise , Indústrias
5.
Eng. sanit. ambient ; 15(4): 385-392, out.-dez. 2010. ilus
Artigo em Português | LILACS | ID: lil-578704

RESUMO

Vários problemas ambientais no Brasil decorrem do acelerado crescimento dos setores produtivos e, consequentemente, da multiplicidade dos resíduos sólidos urbanos gerados. A disposição destes em aterros sanitários é prática comum; entretanto, essa deposição requer medidas de proteção ambiental, incluindo o tratamento dos lixiviados. Este trabalho, conduzido em filtros de areia e coluna de carvão ativado, trata de proposta de tratamento físico-químico do lixiviado como alternativa ao processo biológico. No que se refere ao processo de filtração, observaram-se reduções de até 74 por cento para DQO, 47 por cento para DBO, 93 por cento para cor, 90 por cento para amônia e aumento de 0,3 para 0,9 na relação DBO5/DQO. Constataram-se limitações com relação à duração das carreiras de filtração, para o que se sugere avaliar outras granulometrias de areia e até mesmo tecnologias de tratamento.


Several environmental problems in Brazil are due to the rapid growth of various productive sectors, and the resulting qualitative multiplicity of municipal solid waste that are generated. The disposal of solid waste in landfills is a common practice; however, it requires environment protection measures, including the treatment of leachate. This work conducted in sand filters and activated carbon column refers to physical and chemical treatment of leachate as an alternative to the biological process. Regarding the filtration process, the results showed reductions of up to 74 percent for COD, 47 percent for BOD, 93 percent for color, 90 percent for ammonia and an increase from 0.3 to 0.9 in BOD5/COD relation. Limitations were found in relation to filtration run, which suggests the evaluation of other size grains and even treatment technologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...